Editorial: Heme Oxygenases: Novel Regulators of Reproductive Processes

نویسندگان

  • Ronald J. Wong
  • Ana C. Zenclussen
چکیده

Heme oxygenase (HO) is a ubiquitous enzyme with various properties, but its main function is catalyzing the rate-limiting step in heme degradation to produce equimolar quantities of biliverdin, iron, and carbon monoxide (CO) (Tenhunen et al., 1968). Of its three isozymes, HO-2 and HO-3 are constitutively-expressed and HO-1 is inducible and acts as stress-response protein. It is not only cytoprotective (Vile et al. prevent tissue injury. Also, HO-1 is known to regulate innate and adaptive immunity, and therefore may prevent immune-mediated inflammatory diseases (Wagener et al. Pioneering work from the late Fritz Bach revealed the importance of HO-1 in organ transplantation. Using wild-type (WT, Hmox1 +/+) and Hmox1 −/− mice, Soares et al. (1998) demonstrated that the rapid expression of HO-1 by xenograft endothelial cells, smooth muscle cells, and cardiac myocytes protects xenografts from rejection. The role of HO-1 in xenograft and allograft acceptance is due to its cytoprotective properties that support cell survival and function within the transplanted organ. Moreover, HO-1 can reduce the graft immunogenicity by directly modulating recipient immune response such that regulatory responses are generated. The activation of HO-1 expression in the graft and in immune cells of the recipient can prevent rejection and promote immunotolerance, and probably due to the detoxification of free heme by HO-1 (Soares and Bach, 2007). Using a mouse model where tolerance is induced by donor-specific transfusion and anti-CD40L, Yamashita et al. (2006) observed that HO-1 is necessary for long-term graft tolerance as grafts do not survive in Hmox1 −/− compared to WT control recipients. Modulation of HO-1 was necessary to promote graft tolerance. Donor-specific transfusion alone failed to prolong survival of transplanted hearts, but long-term survival and tolerance were achieved after HO-1 induction. HO-1 induction plus donor-specific transfusion was associated with increases in regulatory T-cells (Tregs) (Yamashita et al., 2006). The immunomodulatory effect on cells from graft recipients is based on the fact that HO-1 directly modulates the phenotype of dendritic cells (DCs) (Moreau et al., 2009). HO-1 is constitutively expressed in immature DCs; however, its expression decreases during DC maturation. HO-1 upregulation can maintain DCs in an immature state, which suppresses the immune response, and then leads to antigen-specific Treg generation (George et al., 2008; Schumacher et al., 2012). Because Tregs from Hmox1 −/− mice are functional, it can be concluded that the suppressive function of Tregs depends upon HO-1-induced modulation of DCs rather than HO-1 expression by Tregs …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The heme oxygenases: important regulators of pregnancy and preeclampsia.

The heme oxygenase system has long been believed to act largely as a housekeeping unit, converting prooxidant free heme from heme protein degradation into the benign bilirubin for conjugation and safe excretion. In recent decades, however, heme oxygenases have emerged as important regulators of cardiovascular function, largely through the production of their biologically active metabolites: car...

متن کامل

Heme oxygenase/carbon monoxide in the female reproductive system: an overlooked signalling pathway.

For a long time, carbon monoxide (CO) was known for its toxic effect on organisms. But there are still many things left to discover on that molecule. CO is formed directly in the body by the enzymatic activity of heme oxygenase (HO). CO plays an important role in many physiological processes, such as cell protections (against various stress factors), and the regulation of metabolic processes. R...

متن کامل

Heme Oxygenases in Cardiovascular Health and Disease.

Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell pr...

متن کامل

Bacillus subtilis HmoB is a heme oxygenase with a novel structure.

Iron availability is limited in the environment and most bacteria have developed a system to acquire iron from host hemoproteins. Heme oxygenase plays an important role by degrading heme group and releasing the essential nutrient iron. The structure of Bacillus subtilis HmoB was determined to 2.0 A resolution. B. subtilis HmoB contains a typical antibiotic biosynthesis monooxygenase (ABM) domai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015